Blocking protein-protein interactions: the identification of repetitive turn structures as basis for inhibitor building blocks
نویسنده
چکیده
Mimetics of secondary structure elements are one promising approach in the design of protein-protein interaction inhibitors, since secondary structure elements are very important recognition motifs in protein-protein interfaces. In helices and turns, the protein backbone provides a scaffold to present the sidechains in the correct orientation for the three-dimensional interaction motif. For both, scaffolds are known that resemble these backbone conformations and can be decorated with sidechains in the right position for mimicking the interaction motif [1]. Benzodiazepines are one example for a successful mimetic of b-turn structures. However, identifying small chemical scaffolds that mimic turn structures is rather complicated. Turns are irregular structures with a wider variety of possible backbone conformations [2] and for each group of conformations a different scaffold is needed. Furthermore, turn structures are generally not included in analysis of protein-protein interfaces. Due to a lack of information in publicly available databases, regions of the protein chains that are outside helices and b-sheets are generally considered as non-regular structural elements. These non-regular structural elements in proteins are by now almost completely classified as turn structures and available via Secbase for data mining approaches [3]. The results of an exhaustive analysis of turn structures involved in protein-protein interfaces will be presented and the impact on the design of secondary structure element mimetics will be discussed. This is of particular interest since the secondary structure space of proteinprotein interfaces is limited and similar interfaces with respect to secondary structure elements exists within proteins showing different overall folds and function [4]. The identification of repetitive turn structures is therefore a valuable approach to predict polypharmacology or identify backbone conformations that could easily be replaced by mimetic building blocks [4]. The decoration of these building blocks with the needed functional sidechain is a good starting point for protein-protein interface inhibitors.
منابع مشابه
Identification and prioritization genes related to Hypercholesterolemia QTLs using gene ontology and protein interaction networks
Gene identification represents the first step to a better understanding of the physiological role of the underlying protein and disease pathways, which in turn serves as a starting point for developing therapeutic interventions. Familial hypercholesterolemia is a hereditary metabolic disorder characterized by high low-density lipoprotein cholesterol levels. Hypercholesterolemia is a quantitativ...
متن کاملA Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks
Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...
متن کاملA Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks
Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...
متن کاملPhysicochemical Position-Dependent Properties in the Protein Secondary Structures
Background: Establishing theories for designing arbitrary protein structures is complicated and depends on understanding the principles for protein folding, which is affected by applied features. Computer algorithms can reach high precision and stability in computationally designing enzymes and binders by applying informative features obtained from natural structures. Methods: In this study, a ...
متن کاملInvestigation the Mechanism of Interaction between Inhibitor ALISERTIB with Protein Kinase A and B Using Modeling, Docking and Molecular Dynamics Simulation
The high level of conservation in ATP-binding sites of protein kinases increasingly demandsthe quest to find selective inhibitors with little cross reactivity. Kinase kinases are a recently discovered group of Kinases found to be involved in several mitotic events. These proteins represent attractive targets for cancer therapy with several small molecule inhibitors undergoing different ph...
متن کامل